Upcoming SciNet Events

SciNet EventsRefresh calendars Add to google calendar
March,2020
Thu 26th Mar
11:00 am
12:00 pm
Add event to google
This course is aimed at reducing your struggle in getting started with computational projects, and make you a more efficient computational scientist. Topics include well-established best practices for developing software as it applies to scientific computations, common numerical techniques and packages, and aspects of high performance computing. While we will introduce the C++ language, in one language or another, students should already have some programming experience. Despite the title, this course is suitable for many physical scientists (chemists, astronomers, ...). Part of Scientific Computing for Physicists, Location: SciNet Online
Fri 27th Mar
11:00 am
12:00 pm
Add event to google
In this course data analysis techniques utilizing Python and R statistical language, will be discussed and introduced, as well as, the basics of programming and scientific computing.The goal of this course is to prepare graduate students to perform scientific data analysis. Successful students will learn how to use statistical inference tools to gain insight into large and small data sets, as well as be exposed to cutting-edge techniques and best practises to store, manage and analyze (large) data.Topics include: Python and R programming, version control, automation, modular programming and scientific visualization.Students willing to take the course as part of their graduate program have to enroll through Acorn/ROSI.This course is part of the EES graduate program and to be taught at the UTSc campus. Location: MW 160 (UTSC)
Show in Google map
Social Sciences Building @ UTSC, Scarborough, M1C 1A4, Canada
Tue 31st Mar
11:00 am
12:00 pm
Add event to google
This course is aimed at reducing your struggle in getting started with computational projects, and make you a more efficient computational scientist. Topics include well-established best practices for developing software as it applies to scientific computations, common numerical techniques and packages, and aspects of high performance computing. While we will introduce the C++ language, in one language or another, students should already have some programming experience. Despite the title, this course is suitable for many physical scientists (chemists, astronomers, ...). Part of Scientific Computing for Physicists, Location: SciNet Online
April,2020
Wed 1st Apr
11:00 am
12:00 pm
Add event to google
In this course data analysis techniques utilizing Python and R statistical language, will be discussed and introduced, as well as, the basics of programming and scientific computing.The goal of this course is to prepare graduate students to perform scientific data analysis. Successful students will learn how to use statistical inference tools to gain insight into large and small data sets, as well as be exposed to cutting-edge techniques and best practises to store, manage and analyze (large) data.Topics include: Python and R programming, version control, automation, modular programming and scientific visualization.Students willing to take the course as part of their graduate program have to enroll through Acorn/ROSI.This course is part of the EES graduate program and to be taught at the UTSc campus. Location: MW 140 (UTSC)
Show in Google map
Social Sciences Building @ UTSC, Scarborough, M1C 1A4, Canada
Thu 2nd Apr
11:00 am
12:00 pm
Add event to google
This course is aimed at reducing your struggle in getting started with computational projects, and make you a more efficient computational scientist. Topics include well-established best practices for developing software as it applies to scientific computations, common numerical techniques and packages, and aspects of high performance computing. While we will introduce the C++ language, in one language or another, students should already have some programming experience. Despite the title, this course is suitable for many physical scientists (chemists, astronomers, ...). Part of Scientific Computing for Physicists, Location: SciNet Online
Fri 3rd Apr
11:00 am
12:00 pm
Add event to google
In this course data analysis techniques utilizing Python and R statistical language, will be discussed and introduced, as well as, the basics of programming and scientific computing.The goal of this course is to prepare graduate students to perform scientific data analysis. Successful students will learn how to use statistical inference tools to gain insight into large and small data sets, as well as be exposed to cutting-edge techniques and best practises to store, manage and analyze (large) data.Topics include: Python and R programming, version control, automation, modular programming and scientific visualization.Students willing to take the course as part of their graduate program have to enroll through Acorn/ROSI.This course is part of the EES graduate program and to be taught at the UTSc campus. Location: MW 160 (UTSC)
Show in Google map
Social Sciences Building @ UTSC, Scarborough, M1C 1A4, Canada
Tue 14th Apr
1:00 pm
2:00 pm
Add event to google
This course is an introductory course in programming utilizing the R Statistical Language.The course is restricted to student of the UofT's Biochemistry departments. Students interested should register though their graduate coordinator. Part of BCH2024H Introduction to Programming with R, Location: SciNet Online
Thu 16th Apr
1:00 pm
2:00 pm
Add event to google
This course is an introductory course in programming utilizing the R Statistical Language.The course is restricted to student of the UofT's Biochemistry departments. Students interested should register though their graduate coordinator. Part of BCH2024H Introduction to Programming with R, Location: SciNet Online
Tue 21st Apr
1:00 pm
2:00 pm
Add event to google
This course is an introductory course in programming utilizing the R Statistical Language.The course is restricted to student of the UofT's Biochemistry departments. Students interested should register though their graduate coordinator. Part of BCH2024H Introduction to Programming with R, Location: SciNet Online
Thu 23rd Apr
1:00 pm
2:00 pm
Add event to google
This course is an introductory course in programming utilizing the R Statistical Language.The course is restricted to student of the UofT's Biochemistry departments. Students interested should register though their graduate coordinator. Part of BCH2024H Introduction to Programming with R, Location: SciNet Online