Upcoming SciNet Events

SciNet EventsRefresh calendars Add to google calendar
January,2020
Tue 7th Jan
11:00 am
12:00 pm
Add event to google
This course is aimed at reducing your struggle in getting started with computational projects, and make you a more efficient computational scientist. Topics include well-established best practices for developing software as it applies to scientific computations, common numerical techniques and packages, and aspects of high performance computing. While we will introduce the C++ language, in one language or another, students should already have some programming experience. Despite the title, this course is suitable for many physical scientists (chemists, astronomers, ...). Part of Scientific Computing for Physicists, Location: SciNet Teaching Room MaRS 1140
Show in Google map
661 University Ave., Toronto, M5G 1M1, Canada
Wed 8th Jan
10:00 am
11:30 am
Add event to google
A quick introduction how to use SciNet and the Niagara supercomputer. Location: SciNet Boardroom MaRS 1140
Show in Google map
661 University Ave., Toronto, M5G 1M1, Canada
Wed 8th Jan
11:00 am
12:00 pm
Add event to google
In this course data analysis techniques utilizing Python and R statistical language, will be discussed and introduced, as well as, the basics of programming and scientific computing.The goal of this course is to prepare graduate students to perform scientific data analysis. Successful students will learn how to use statistical inference tools to gain insight into large and small data sets, as well as be exposed to cutting-edge techniques and best practises to store, manage and analyze (large) data.Topics include: Python and R programming, version control, automation, modular programming and scientific visualization.Students willing to take the course as part of their graduate program have to enroll through Acorn/ROSI.This course is part of the EES graduate program and to be taught at the UTSc campus. Location: MW 140 (UTSC)
Show in Google map
Social Sciences Building @ UTSC, Scarborough, M1C 1A4, Canada
Thu 9th Jan
11:00 am
12:00 pm
Add event to google
This course is aimed at reducing your struggle in getting started with computational projects, and make you a more efficient computational scientist. Topics include well-established best practices for developing software as it applies to scientific computations, common numerical techniques and packages, and aspects of high performance computing. While we will introduce the C++ language, in one language or another, students should already have some programming experience. Despite the title, this course is suitable for many physical scientists (chemists, astronomers, ...). Part of Scientific Computing for Physicists, Location: SciNet Teaching Room MaRS 1140
Show in Google map
661 University Ave., Toronto, M5G 1M1, Canada
Fri 10th Jan
11:00 am
12:00 pm
Add event to google
In this course data analysis techniques utilizing Python and R statistical language, will be discussed and introduced, as well as, the basics of programming and scientific computing.The goal of this course is to prepare graduate students to perform scientific data analysis. Successful students will learn how to use statistical inference tools to gain insight into large and small data sets, as well as be exposed to cutting-edge techniques and best practises to store, manage and analyze (large) data.Topics include: Python and R programming, version control, automation, modular programming and scientific visualization.Students willing to take the course as part of their graduate program have to enroll through Acorn/ROSI.This course is part of the EES graduate program and to be taught at the UTSc campus. Location: MW 160 (UTSC)
Show in Google map
Social Sciences Building @ UTSC, Scarborough, M1C 1A4, Canada
Tue 14th Jan
11:00 am
12:00 pm
Add event to google
This course is aimed at reducing your struggle in getting started with computational projects, and make you a more efficient computational scientist. Topics include well-established best practices for developing software as it applies to scientific computations, common numerical techniques and packages, and aspects of high performance computing. While we will introduce the C++ language, in one language or another, students should already have some programming experience. Despite the title, this course is suitable for many physical scientists (chemists, astronomers, ...). Part of Scientific Computing for Physicists, Location: SciNet Teaching Room MaRS 1140
Show in Google map
661 University Ave., Toronto, M5G 1M1, Canada
Wed 15th Jan
11:00 am
12:00 pm
Add event to google
In this course data analysis techniques utilizing Python and R statistical language, will be discussed and introduced, as well as, the basics of programming and scientific computing.The goal of this course is to prepare graduate students to perform scientific data analysis. Successful students will learn how to use statistical inference tools to gain insight into large and small data sets, as well as be exposed to cutting-edge techniques and best practises to store, manage and analyze (large) data.Topics include: Python and R programming, version control, automation, modular programming and scientific visualization.Students willing to take the course as part of their graduate program have to enroll through Acorn/ROSI.This course is part of the EES graduate program and to be taught at the UTSc campus. Location: MW 140 (UTSC)
Show in Google map
Social Sciences Building @ UTSC, Scarborough, M1C 1A4, Canada
Wed 15th Jan
1:00 pm
4:00 pm
Add event to google
Working with many of the HPC systems in Ontario involves using the Linux command line. This provides a very powerful interface, but it can be quite daunting for the uninitiated. In this half-day session, you can become initiated with basic commands in the Linux environment. Location: SciNet Teaching Room MaRS 1140
Show in Google map
661 University Ave., Toronto, M5G 1M1, Canada
Thu 16th Jan
11:00 am
12:00 pm
Add event to google
This course is aimed at reducing your struggle in getting started with computational projects, and make you a more efficient computational scientist. Topics include well-established best practices for developing software as it applies to scientific computations, common numerical techniques and packages, and aspects of high performance computing. While we will introduce the C++ language, in one language or another, students should already have some programming experience. Despite the title, this course is suitable for many physical scientists (chemists, astronomers, ...). Part of Scientific Computing for Physicists, Location: SciNet Teaching Room MaRS 1140
Show in Google map
661 University Ave., Toronto, M5G 1M1, Canada
Fri 17th Jan
11:00 am
12:00 pm
Add event to google
In this course data analysis techniques utilizing Python and R statistical language, will be discussed and introduced, as well as, the basics of programming and scientific computing.The goal of this course is to prepare graduate students to perform scientific data analysis. Successful students will learn how to use statistical inference tools to gain insight into large and small data sets, as well as be exposed to cutting-edge techniques and best practises to store, manage and analyze (large) data.Topics include: Python and R programming, version control, automation, modular programming and scientific visualization.Students willing to take the course as part of their graduate program have to enroll through Acorn/ROSI.This course is part of the EES graduate program and to be taught at the UTSc campus. Location: MW 160 (UTSC)
Show in Google map
Social Sciences Building @ UTSC, Scarborough, M1C 1A4, Canada
Tue 21st Jan
11:00 am
12:00 pm
Add event to google
This course is aimed at reducing your struggle in getting started with computational projects, and make you a more efficient computational scientist. Topics include well-established best practices for developing software as it applies to scientific computations, common numerical techniques and packages, and aspects of high performance computing. While we will introduce the C++ language, in one language or another, students should already have some programming experience. Despite the title, this course is suitable for many physical scientists (chemists, astronomers, ...). Part of Scientific Computing for Physicists, Location: SciNet Teaching Room MaRS 1140
Show in Google map
661 University Ave., Toronto, M5G 1M1, Canada
Wed 22nd Jan
11:00 am
12:00 pm
Add event to google
In this course data analysis techniques utilizing Python and R statistical language, will be discussed and introduced, as well as, the basics of programming and scientific computing.The goal of this course is to prepare graduate students to perform scientific data analysis. Successful students will learn how to use statistical inference tools to gain insight into large and small data sets, as well as be exposed to cutting-edge techniques and best practises to store, manage and analyze (large) data.Topics include: Python and R programming, version control, automation, modular programming and scientific visualization.Students willing to take the course as part of their graduate program have to enroll through Acorn/ROSI.This course is part of the EES graduate program and to be taught at the UTSc campus. Location: MW 140 (UTSC)
Show in Google map
Social Sciences Building @ UTSC, Scarborough, M1C 1A4, Canada
Thu 23rd Jan
11:00 am
12:00 pm
Add event to google
This course is aimed at reducing your struggle in getting started with computational projects, and make you a more efficient computational scientist. Topics include well-established best practices for developing software as it applies to scientific computations, common numerical techniques and packages, and aspects of high performance computing. While we will introduce the C++ language, in one language or another, students should already have some programming experience. Despite the title, this course is suitable for many physical scientists (chemists, astronomers, ...). Part of Scientific Computing for Physicists, Location: SciNet Teaching Room MaRS 1140
Show in Google map
661 University Ave., Toronto, M5G 1M1, Canada
Fri 24th Jan
11:00 am
12:00 pm
Add event to google
In this course data analysis techniques utilizing Python and R statistical language, will be discussed and introduced, as well as, the basics of programming and scientific computing.The goal of this course is to prepare graduate students to perform scientific data analysis. Successful students will learn how to use statistical inference tools to gain insight into large and small data sets, as well as be exposed to cutting-edge techniques and best practises to store, manage and analyze (large) data.Topics include: Python and R programming, version control, automation, modular programming and scientific visualization.Students willing to take the course as part of their graduate program have to enroll through Acorn/ROSI.This course is part of the EES graduate program and to be taught at the UTSc campus. Location: MW 160 (UTSC)
Show in Google map
Social Sciences Building @ UTSC, Scarborough, M1C 1A4, Canada
Tue 28th Jan
11:00 am
12:00 pm
Add event to google
This course is aimed at reducing your struggle in getting started with computational projects, and make you a more efficient computational scientist. Topics include well-established best practices for developing software as it applies to scientific computations, common numerical techniques and packages, and aspects of high performance computing. While we will introduce the C++ language, in one language or another, students should already have some programming experience. Despite the title, this course is suitable for many physical scientists (chemists, astronomers, ...). Part of Scientific Computing for Physicists, Location: SciNet Teaching Room MaRS 1140
Show in Google map
661 University Ave., Toronto, M5G 1M1, Canada
Wed 29th Jan
11:00 am
12:00 pm
Add event to google
In this course data analysis techniques utilizing Python and R statistical language, will be discussed and introduced, as well as, the basics of programming and scientific computing.The goal of this course is to prepare graduate students to perform scientific data analysis. Successful students will learn how to use statistical inference tools to gain insight into large and small data sets, as well as be exposed to cutting-edge techniques and best practises to store, manage and analyze (large) data.Topics include: Python and R programming, version control, automation, modular programming and scientific visualization.Students willing to take the course as part of their graduate program have to enroll through Acorn/ROSI.This course is part of the EES graduate program and to be taught at the UTSc campus. Location: MW 140 (UTSC)
Show in Google map
Social Sciences Building @ UTSC, Scarborough, M1C 1A4, Canada
Thu 30th Jan
11:00 am
12:00 pm
Add event to google
This course is aimed at reducing your struggle in getting started with computational projects, and make you a more efficient computational scientist. Topics include well-established best practices for developing software as it applies to scientific computations, common numerical techniques and packages, and aspects of high performance computing. While we will introduce the C++ language, in one language or another, students should already have some programming experience. Despite the title, this course is suitable for many physical scientists (chemists, astronomers, ...). Part of Scientific Computing for Physicists, Location: SciNet Teaching Room MaRS 1140
Show in Google map
661 University Ave., Toronto, M5G 1M1, Canada
Fri 31st Jan
11:00 am
12:00 pm
Add event to google
In this course data analysis techniques utilizing Python and R statistical language, will be discussed and introduced, as well as, the basics of programming and scientific computing.The goal of this course is to prepare graduate students to perform scientific data analysis. Successful students will learn how to use statistical inference tools to gain insight into large and small data sets, as well as be exposed to cutting-edge techniques and best practises to store, manage and analyze (large) data.Topics include: Python and R programming, version control, automation, modular programming and scientific visualization.Students willing to take the course as part of their graduate program have to enroll through Acorn/ROSI.This course is part of the EES graduate program and to be taught at the UTSc campus. Location: MW 160 (UTSC)
Show in Google map
Social Sciences Building @ UTSC, Scarborough, M1C 1A4, Canada
February,2020
Mon 3rd Feb
1:00 pm
4:00 pm
Add event to google
Apply MPI to realistic scientific computing examples and learn to use advanced MPI techniques such as non-blocking communications. Location: SciNet Teaching Room MaRS 1140
Show in Google map
661 University Ave., Toronto, M5G 1M1, Canada
Tue 4th Feb
11:00 am
12:00 pm
Add event to google
This course is aimed at reducing your struggle in getting started with computational projects, and make you a more efficient computational scientist. Topics include well-established best practices for developing software as it applies to scientific computations, common numerical techniques and packages, and aspects of high performance computing. While we will introduce the C++ language, in one language or another, students should already have some programming experience. Despite the title, this course is suitable for many physical scientists (chemists, astronomers, ...). Part of Scientific Computing for Physicists, Location: SciNet Teaching Room MaRS 1140
Show in Google map
661 University Ave., Toronto, M5G 1M1, Canada
Wed 5th Feb
11:00 am
12:00 pm
Add event to google
In this course data analysis techniques utilizing Python and R statistical language, will be discussed and introduced, as well as, the basics of programming and scientific computing.The goal of this course is to prepare graduate students to perform scientific data analysis. Successful students will learn how to use statistical inference tools to gain insight into large and small data sets, as well as be exposed to cutting-edge techniques and best practises to store, manage and analyze (large) data.Topics include: Python and R programming, version control, automation, modular programming and scientific visualization.Students willing to take the course as part of their graduate program have to enroll through Acorn/ROSI.This course is part of the EES graduate program and to be taught at the UTSc campus. Location: MW 140 (UTSC)
Show in Google map
Social Sciences Building @ UTSC, Scarborough, M1C 1A4, Canada
Thu 6th Feb
11:00 am
12:00 pm
Add event to google
This course is aimed at reducing your struggle in getting started with computational projects, and make you a more efficient computational scientist. Topics include well-established best practices for developing software as it applies to scientific computations, common numerical techniques and packages, and aspects of high performance computing. While we will introduce the C++ language, in one language or another, students should already have some programming experience. Despite the title, this course is suitable for many physical scientists (chemists, astronomers, ...). Part of Scientific Computing for Physicists, Location: SciNet Teaching Room MaRS 1140
Show in Google map
661 University Ave., Toronto, M5G 1M1, Canada
Fri 7th Feb
11:00 am
12:00 pm
Add event to google
In this course data analysis techniques utilizing Python and R statistical language, will be discussed and introduced, as well as, the basics of programming and scientific computing.The goal of this course is to prepare graduate students to perform scientific data analysis. Successful students will learn how to use statistical inference tools to gain insight into large and small data sets, as well as be exposed to cutting-edge techniques and best practises to store, manage and analyze (large) data.Topics include: Python and R programming, version control, automation, modular programming and scientific visualization.Students willing to take the course as part of their graduate program have to enroll through Acorn/ROSI.This course is part of the EES graduate program and to be taught at the UTSc campus. Location: MW 160 (UTSC)
Show in Google map
Social Sciences Building @ UTSC, Scarborough, M1C 1A4, Canada
Tue 11th Feb
11:00 am
12:00 pm
Add event to google
This course is aimed at reducing your struggle in getting started with computational projects, and make you a more efficient computational scientist. Topics include well-established best practices for developing software as it applies to scientific computations, common numerical techniques and packages, and aspects of high performance computing. While we will introduce the C++ language, in one language or another, students should already have some programming experience. Despite the title, this course is suitable for many physical scientists (chemists, astronomers, ...). Part of Scientific Computing for Physicists, Location: SciNet Teaching Room MaRS 1140
Show in Google map
661 University Ave., Toronto, M5G 1M1, Canada
Wed 12th Feb
10:00 am
11:30 am
Add event to google
A quick introduction how to use SciNet and the Niagara supercomputer. Location: SciNet Boardroom MaRS 1140
Show in Google map
661 University Ave., Toronto, M5G 1M1, Canada
Wed 12th Feb
11:00 am
12:00 pm
Add event to google
In this course data analysis techniques utilizing Python and R statistical language, will be discussed and introduced, as well as, the basics of programming and scientific computing.The goal of this course is to prepare graduate students to perform scientific data analysis. Successful students will learn how to use statistical inference tools to gain insight into large and small data sets, as well as be exposed to cutting-edge techniques and best practises to store, manage and analyze (large) data.Topics include: Python and R programming, version control, automation, modular programming and scientific visualization.Students willing to take the course as part of their graduate program have to enroll through Acorn/ROSI.This course is part of the EES graduate program and to be taught at the UTSc campus. Location: MW 140 (UTSC)
Show in Google map
Social Sciences Building @ UTSC, Scarborough, M1C 1A4, Canada
Wed 12th Feb
12:00 pm
1:00 pm
Add event to google
Monthly user meeting at SciNet with pizza, user discussion, and a techtalk. This month: Introducing the Mist GPU Cluster and user discussion. Location: SciNet Teaching Room MaRS 1140
Show in Google map
661 University Ave., Toronto, M5G 1M1, Canada
Thu 13th Feb
11:00 am
12:00 pm
Add event to google
This course is aimed at reducing your struggle in getting started with computational projects, and make you a more efficient computational scientist. Topics include well-established best practices for developing software as it applies to scientific computations, common numerical techniques and packages, and aspects of high performance computing. While we will introduce the C++ language, in one language or another, students should already have some programming experience. Despite the title, this course is suitable for many physical scientists (chemists, astronomers, ...). Part of Scientific Computing for Physicists, Location: SciNet Teaching Room MaRS 1140
Show in Google map
661 University Ave., Toronto, M5G 1M1, Canada
Fri 14th Feb
11:00 am
12:00 pm
Add event to google
In this course data analysis techniques utilizing Python and R statistical language, will be discussed and introduced, as well as, the basics of programming and scientific computing.The goal of this course is to prepare graduate students to perform scientific data analysis. Successful students will learn how to use statistical inference tools to gain insight into large and small data sets, as well as be exposed to cutting-edge techniques and best practises to store, manage and analyze (large) data.Topics include: Python and R programming, version control, automation, modular programming and scientific visualization.Students willing to take the course as part of their graduate program have to enroll through Acorn/ROSI.This course is part of the EES graduate program and to be taught at the UTSc campus. Location: MW 160 (UTSC)
Show in Google map
Social Sciences Building @ UTSC, Scarborough, M1C 1A4, Canada
Wed 19th Feb
1:00 pm
4:00 pm
Add event to google
Learn how to write bash scripts, use environment variables, how to control process, and much more. Requires some linux basic command line experience. Location: SciNet Teaching Room MaRS 1140
Show in Google map
661 University Ave., Toronto, M5G 1M1, Canada
Tue 25th Feb
11:00 am
12:00 pm
Add event to google
This course is aimed at reducing your struggle in getting started with computational projects, and make you a more efficient computational scientist. Topics include well-established best practices for developing software as it applies to scientific computations, common numerical techniques and packages, and aspects of high performance computing. While we will introduce the C++ language, in one language or another, students should already have some programming experience. Despite the title, this course is suitable for many physical scientists (chemists, astronomers, ...). Part of Scientific Computing for Physicists, Location: SciNet Teaching Room MaRS 1140
Show in Google map
661 University Ave., Toronto, M5G 1M1, Canada
Wed 26th Feb
11:00 am
12:00 pm
Add event to google
In this course data analysis techniques utilizing Python and R statistical language, will be discussed and introduced, as well as, the basics of programming and scientific computing.The goal of this course is to prepare graduate students to perform scientific data analysis. Successful students will learn how to use statistical inference tools to gain insight into large and small data sets, as well as be exposed to cutting-edge techniques and best practises to store, manage and analyze (large) data.Topics include: Python and R programming, version control, automation, modular programming and scientific visualization.Students willing to take the course as part of their graduate program have to enroll through Acorn/ROSI.This course is part of the EES graduate program and to be taught at the UTSc campus. Location: MW 140 (UTSC)
Show in Google map
Social Sciences Building @ UTSC, Scarborough, M1C 1A4, Canada
Thu 27th Feb
11:00 am
12:00 pm
Add event to google
This course is aimed at reducing your struggle in getting started with computational projects, and make you a more efficient computational scientist. Topics include well-established best practices for developing software as it applies to scientific computations, common numerical techniques and packages, and aspects of high performance computing. While we will introduce the C++ language, in one language or another, students should already have some programming experience. Despite the title, this course is suitable for many physical scientists (chemists, astronomers, ...). Part of Scientific Computing for Physicists, Location: SciNet Teaching Room MaRS 1140
Show in Google map
661 University Ave., Toronto, M5G 1M1, Canada
Fri 28th Feb
11:00 am
12:00 pm
Add event to google
In this course data analysis techniques utilizing Python and R statistical language, will be discussed and introduced, as well as, the basics of programming and scientific computing.The goal of this course is to prepare graduate students to perform scientific data analysis. Successful students will learn how to use statistical inference tools to gain insight into large and small data sets, as well as be exposed to cutting-edge techniques and best practises to store, manage and analyze (large) data.Topics include: Python and R programming, version control, automation, modular programming and scientific visualization.Students willing to take the course as part of their graduate program have to enroll through Acorn/ROSI.This course is part of the EES graduate program and to be taught at the UTSc campus. Location: MW 160 (UTSC)
Show in Google map
Social Sciences Building @ UTSC, Scarborough, M1C 1A4, Canada
March,2020
Tue 3rd Mar
11:00 am
12:00 pm
Add event to google
This course is aimed at reducing your struggle in getting started with computational projects, and make you a more efficient computational scientist. Topics include well-established best practices for developing software as it applies to scientific computations, common numerical techniques and packages, and aspects of high performance computing. While we will introduce the C++ language, in one language or another, students should already have some programming experience. Despite the title, this course is suitable for many physical scientists (chemists, astronomers, ...). Part of Scientific Computing for Physicists, Location: SciNet Teaching Room MaRS 1140
Show in Google map
661 University Ave., Toronto, M5G 1M1, Canada
Wed 4th Mar
11:00 am
12:00 pm
Add event to google
In this course data analysis techniques utilizing Python and R statistical language, will be discussed and introduced, as well as, the basics of programming and scientific computing.The goal of this course is to prepare graduate students to perform scientific data analysis. Successful students will learn how to use statistical inference tools to gain insight into large and small data sets, as well as be exposed to cutting-edge techniques and best practises to store, manage and analyze (large) data.Topics include: Python and R programming, version control, automation, modular programming and scientific visualization.Students willing to take the course as part of their graduate program have to enroll through Acorn/ROSI.This course is part of the EES graduate program and to be taught at the UTSc campus. Location: MW 140 (UTSC)
Show in Google map
Social Sciences Building @ UTSC, Scarborough, M1C 1A4, Canada
Thu 5th Mar
11:00 am
12:00 pm
Add event to google
This course is aimed at reducing your struggle in getting started with computational projects, and make you a more efficient computational scientist. Topics include well-established best practices for developing software as it applies to scientific computations, common numerical techniques and packages, and aspects of high performance computing. While we will introduce the C++ language, in one language or another, students should already have some programming experience. Despite the title, this course is suitable for many physical scientists (chemists, astronomers, ...). Part of Scientific Computing for Physicists, Location: SciNet Teaching Room MaRS 1140
Show in Google map
661 University Ave., Toronto, M5G 1M1, Canada
Fri 6th Mar
11:00 am
12:00 pm
Add event to google
In this course data analysis techniques utilizing Python and R statistical language, will be discussed and introduced, as well as, the basics of programming and scientific computing.The goal of this course is to prepare graduate students to perform scientific data analysis. Successful students will learn how to use statistical inference tools to gain insight into large and small data sets, as well as be exposed to cutting-edge techniques and best practises to store, manage and analyze (large) data.Topics include: Python and R programming, version control, automation, modular programming and scientific visualization.Students willing to take the course as part of their graduate program have to enroll through Acorn/ROSI.This course is part of the EES graduate program and to be taught at the UTSc campus. Location: MW 160 (UTSC)
Show in Google map
Social Sciences Building @ UTSC, Scarborough, M1C 1A4, Canada
Tue 10th Mar
11:00 am
12:00 pm
Add event to google
This course is aimed at reducing your struggle in getting started with computational projects, and make you a more efficient computational scientist. Topics include well-established best practices for developing software as it applies to scientific computations, common numerical techniques and packages, and aspects of high performance computing. While we will introduce the C++ language, in one language or another, students should already have some programming experience. Despite the title, this course is suitable for many physical scientists (chemists, astronomers, ...). Part of Scientific Computing for Physicists, Location: SciNet Teaching Room MaRS 1140
Show in Google map
661 University Ave., Toronto, M5G 1M1, Canada
Wed 11th Mar
10:00 am
11:30 am
Add event to google
A quick introduction how to use SciNet and the Niagara supercomputer. Part of Intro to SciNet, Niagara and Mist, Location: SciNet Boardroom MaRS 1140
Show in Google map
661 University Ave., Toronto, M5G 1M1, Canada
Wed 11th Mar
11:00 am
12:00 pm
Add event to google
In this course data analysis techniques utilizing Python and R statistical language, will be discussed and introduced, as well as, the basics of programming and scientific computing.The goal of this course is to prepare graduate students to perform scientific data analysis. Successful students will learn how to use statistical inference tools to gain insight into large and small data sets, as well as be exposed to cutting-edge techniques and best practises to store, manage and analyze (large) data.Topics include: Python and R programming, version control, automation, modular programming and scientific visualization.Students willing to take the course as part of their graduate program have to enroll through Acorn/ROSI.This course is part of the EES graduate program and to be taught at the UTSc campus. Location: MW 140 (UTSC)
Show in Google map
Social Sciences Building @ UTSC, Scarborough, M1C 1A4, Canada
Thu 12th Mar
11:00 am
12:00 pm
Add event to google
This course is aimed at reducing your struggle in getting started with computational projects, and make you a more efficient computational scientist. Topics include well-established best practices for developing software as it applies to scientific computations, common numerical techniques and packages, and aspects of high performance computing. While we will introduce the C++ language, in one language or another, students should already have some programming experience. Despite the title, this course is suitable for many physical scientists (chemists, astronomers, ...). Part of Scientific Computing for Physicists, Location: SciNet Teaching Room MaRS 1140
Show in Google map
661 University Ave., Toronto, M5G 1M1, Canada
Fri 13th Mar
11:00 am
12:00 pm
Add event to google
In this course data analysis techniques utilizing Python and R statistical language, will be discussed and introduced, as well as, the basics of programming and scientific computing.The goal of this course is to prepare graduate students to perform scientific data analysis. Successful students will learn how to use statistical inference tools to gain insight into large and small data sets, as well as be exposed to cutting-edge techniques and best practises to store, manage and analyze (large) data.Topics include: Python and R programming, version control, automation, modular programming and scientific visualization.Students willing to take the course as part of their graduate program have to enroll through Acorn/ROSI.This course is part of the EES graduate program and to be taught at the UTSc campus. Location: MW 160 (UTSC)
Show in Google map
Social Sciences Building @ UTSC, Scarborough, M1C 1A4, Canada