Upcoming SciNet Events

SciNet EventsRefresh calendars Add to google calendar
January,2021
Tue 19th Jan
10:30 am
12:00 pm
Add event to google
In this course data analysis techniques utilizing Python and R statistical language, will be discussed and introduced, as well as, the basics of programming and scientific computing.The goal of this course is to prepare graduate students to perform scientific data analysis. Successful students will learn how to use statistical inference tools to gain insight into large and small data sets, as well as be exposed to cutting-edge techniques and best practises to store, manage and analyze (large) data.Topics include: Python and R programming, version control, automation, modular programming and scientific visualization.Students willing to take the course as part of their graduate program have to enroll through Acorn/ROSI.This course is part of the EES graduate program and to be taught at the UTSc campus. Part of Quantitative Applications for Data Analysis, Location: SciNet Online
Tue 19th Jan
11:00 am
12:00 pm
Add event to google
This course is aimed at reducing your struggle in getting started with computational projects, and make you a more efficient computational scientist. Topics include well-established best practices for developing software as it applies to scientific computations, common numerical techniques and packages, and aspects of high performance computing. While we will introduce the C++ language, in one language or another, students should already have some programming experience. Despite the title, this course is suitable for many physical scientists (chemists, astronomers, ...). Part of Scientific Computing for Physicists, Location: SciNet Online
Wed 20th Jan
10:00 am
1:00 pm
Add event to google
Working with many of the HPC systems in Ontario involves using the Linux/UNIX command line. This provides a very powerful interface, but it can be quite daunting for the uninitiated. In this half-day session, you can become initiated with this course. This hands on session will cover basic commands. It could be a great boon for your productivity. Location: SciNet Teaching Room MaRS 1140
Show in Google map
661 University Ave., Toronto, M5G 1M1, Canada
Wed 20th Jan
2:00 pm
3:00 pm
Add event to google
This course is aimed at reducing your struggle in getting started with computational projects, and make you a more efficient computational scientist. Topics include well-established best practices for developing software as it applies to scientific computations, common numerical techniques and packages, and aspects of high performance computing. While we will introduce the C++ language, in one language or another, students should already have some programming experience. Despite the title, this course is suitable for many physical scientists (chemists, astronomers, ...). Part of Scientific Computing for Physicists, Location: SciNet Online
Thu 21st Jan
11:00 am
12:30 pm
Add event to google
In this course data analysis techniques utilizing Python and R statistical language, will be discussed and introduced, as well as, the basics of programming and scientific computing.The goal of this course is to prepare graduate students to perform scientific data analysis. Successful students will learn how to use statistical inference tools to gain insight into large and small data sets, as well as be exposed to cutting-edge techniques and best practises to store, manage and analyze (large) data.Topics include: Python and R programming, version control, automation, modular programming and scientific visualization.Students willing to take the course as part of their graduate program have to enroll through Acorn/ROSI.This course is part of the EES graduate program and to be taught at the UTSc campus. Part of Quantitative Applications for Data Analysis, Location: SciNet Online
Thu 21st Jan
11:00 am
12:00 pm
Add event to google
This course is aimed at reducing your struggle in getting started with computational projects, and make you a more efficient computational scientist. Topics include well-established best practices for developing software as it applies to scientific computations, common numerical techniques and packages, and aspects of high performance computing. While we will introduce the C++ language, in one language or another, students should already have some programming experience. Despite the title, this course is suitable for many physical scientists (chemists, astronomers, ...). Part of Scientific Computing for Physicists, Location: SciNet Online
Fri 22nd Jan
12:00 pm
1:00 pm
Add event to google
This course is aimed at reducing your struggle in getting started with computational projects, and make you a more efficient computational scientist. Topics include well-established best practices for developing software as it applies to scientific computations, common numerical techniques and packages, and aspects of high performance computing. While we will introduce the C++ language, in one language or another, students should already have some programming experience. Despite the title, this course is suitable for many physical scientists (chemists, astronomers, ...). Part of Scientific Computing for Physicists, Location: SciNet Online
Tue 26th Jan
10:30 am
12:00 pm
Add event to google
In this course data analysis techniques utilizing Python and R statistical language, will be discussed and introduced, as well as, the basics of programming and scientific computing.The goal of this course is to prepare graduate students to perform scientific data analysis. Successful students will learn how to use statistical inference tools to gain insight into large and small data sets, as well as be exposed to cutting-edge techniques and best practises to store, manage and analyze (large) data.Topics include: Python and R programming, version control, automation, modular programming and scientific visualization.Students willing to take the course as part of their graduate program have to enroll through Acorn/ROSI.This course is part of the EES graduate program and to be taught at the UTSc campus. Part of Quantitative Applications for Data Analysis, Location: SciNet Online
Tue 26th Jan
11:00 am
12:00 pm
Add event to google
This course is aimed at reducing your struggle in getting started with computational projects, and make you a more efficient computational scientist. Topics include well-established best practices for developing software as it applies to scientific computations, common numerical techniques and packages, and aspects of high performance computing. While we will introduce the C++ language, in one language or another, students should already have some programming experience. Despite the title, this course is suitable for many physical scientists (chemists, astronomers, ...). Part of Scientific Computing for Physicists, Location: SciNet Online
Wed 27th Jan
2:00 pm
3:00 pm
Add event to google
This course is aimed at reducing your struggle in getting started with computational projects, and make you a more efficient computational scientist. Topics include well-established best practices for developing software as it applies to scientific computations, common numerical techniques and packages, and aspects of high performance computing. While we will introduce the C++ language, in one language or another, students should already have some programming experience. Despite the title, this course is suitable for many physical scientists (chemists, astronomers, ...). Part of Scientific Computing for Physicists, Location: SciNet Online
Thu 28th Jan
11:00 am
12:30 pm
Add event to google
In this course data analysis techniques utilizing Python and R statistical language, will be discussed and introduced, as well as, the basics of programming and scientific computing.The goal of this course is to prepare graduate students to perform scientific data analysis. Successful students will learn how to use statistical inference tools to gain insight into large and small data sets, as well as be exposed to cutting-edge techniques and best practises to store, manage and analyze (large) data.Topics include: Python and R programming, version control, automation, modular programming and scientific visualization.Students willing to take the course as part of their graduate program have to enroll through Acorn/ROSI.This course is part of the EES graduate program and to be taught at the UTSc campus. Part of Quantitative Applications for Data Analysis, Location: SciNet Online
Thu 28th Jan
11:00 am
12:00 pm
Add event to google
This course is aimed at reducing your struggle in getting started with computational projects, and make you a more efficient computational scientist. Topics include well-established best practices for developing software as it applies to scientific computations, common numerical techniques and packages, and aspects of high performance computing. While we will introduce the C++ language, in one language or another, students should already have some programming experience. Despite the title, this course is suitable for many physical scientists (chemists, astronomers, ...). Part of Scientific Computing for Physicists, Location: SciNet Online
Fri 29th Jan
12:00 pm
1:00 pm
Add event to google
This course is aimed at reducing your struggle in getting started with computational projects, and make you a more efficient computational scientist. Topics include well-established best practices for developing software as it applies to scientific computations, common numerical techniques and packages, and aspects of high performance computing. While we will introduce the C++ language, in one language or another, students should already have some programming experience. Despite the title, this course is suitable for many physical scientists (chemists, astronomers, ...). Part of Scientific Computing for Physicists, Location: SciNet Online
February,2021
Tue 2nd Feb
10:30 am
12:00 pm
Add event to google
In this course data analysis techniques utilizing Python and R statistical language, will be discussed and introduced, as well as, the basics of programming and scientific computing.The goal of this course is to prepare graduate students to perform scientific data analysis. Successful students will learn how to use statistical inference tools to gain insight into large and small data sets, as well as be exposed to cutting-edge techniques and best practises to store, manage and analyze (large) data.Topics include: Python and R programming, version control, automation, modular programming and scientific visualization.Students willing to take the course as part of their graduate program have to enroll through Acorn/ROSI.This course is part of the EES graduate program and to be taught at the UTSc campus. Part of Quantitative Applications for Data Analysis, Location: SciNet Online
Tue 2nd Feb
11:00 am
12:00 pm
Add event to google
This course is aimed at reducing your struggle in getting started with computational projects, and make you a more efficient computational scientist. Topics include well-established best practices for developing software as it applies to scientific computations, common numerical techniques and packages, and aspects of high performance computing. While we will introduce the C++ language, in one language or another, students should already have some programming experience. Despite the title, this course is suitable for many physical scientists (chemists, astronomers, ...). Part of Scientific Computing for Physicists, Location: SciNet Online
Wed 3rd Feb
2:00 pm
3:00 pm
Add event to google
This course is aimed at reducing your struggle in getting started with computational projects, and make you a more efficient computational scientist. Topics include well-established best practices for developing software as it applies to scientific computations, common numerical techniques and packages, and aspects of high performance computing. While we will introduce the C++ language, in one language or another, students should already have some programming experience. Despite the title, this course is suitable for many physical scientists (chemists, astronomers, ...). Part of Scientific Computing for Physicists, Location: SciNet Online
Thu 4th Feb
11:00 am
12:30 pm
Add event to google
In this course data analysis techniques utilizing Python and R statistical language, will be discussed and introduced, as well as, the basics of programming and scientific computing.The goal of this course is to prepare graduate students to perform scientific data analysis. Successful students will learn how to use statistical inference tools to gain insight into large and small data sets, as well as be exposed to cutting-edge techniques and best practises to store, manage and analyze (large) data.Topics include: Python and R programming, version control, automation, modular programming and scientific visualization.Students willing to take the course as part of their graduate program have to enroll through Acorn/ROSI.This course is part of the EES graduate program and to be taught at the UTSc campus. Part of Quantitative Applications for Data Analysis, Location: SciNet Online
Thu 4th Feb
11:00 am
12:00 pm
Add event to google
This course is aimed at reducing your struggle in getting started with computational projects, and make you a more efficient computational scientist. Topics include well-established best practices for developing software as it applies to scientific computations, common numerical techniques and packages, and aspects of high performance computing. While we will introduce the C++ language, in one language or another, students should already have some programming experience. Despite the title, this course is suitable for many physical scientists (chemists, astronomers, ...). Part of Scientific Computing for Physicists, Location: SciNet Online
Fri 5th Feb
12:00 pm
1:00 pm
Add event to google
This course is aimed at reducing your struggle in getting started with computational projects, and make you a more efficient computational scientist. Topics include well-established best practices for developing software as it applies to scientific computations, common numerical techniques and packages, and aspects of high performance computing. While we will introduce the C++ language, in one language or another, students should already have some programming experience. Despite the title, this course is suitable for many physical scientists (chemists, astronomers, ...). Part of Scientific Computing for Physicists, Location: SciNet Online
Tue 9th Feb
10:30 am
12:00 pm
Add event to google
In this course data analysis techniques utilizing Python and R statistical language, will be discussed and introduced, as well as, the basics of programming and scientific computing.The goal of this course is to prepare graduate students to perform scientific data analysis. Successful students will learn how to use statistical inference tools to gain insight into large and small data sets, as well as be exposed to cutting-edge techniques and best practises to store, manage and analyze (large) data.Topics include: Python and R programming, version control, automation, modular programming and scientific visualization.Students willing to take the course as part of their graduate program have to enroll through Acorn/ROSI.This course is part of the EES graduate program and to be taught at the UTSc campus. Part of Quantitative Applications for Data Analysis, Location: SciNet Online
Tue 9th Feb
11:00 am
12:00 pm
Add event to google
This course is aimed at reducing your struggle in getting started with computational projects, and make you a more efficient computational scientist. Topics include well-established best practices for developing software as it applies to scientific computations, common numerical techniques and packages, and aspects of high performance computing. While we will introduce the C++ language, in one language or another, students should already have some programming experience. Despite the title, this course is suitable for many physical scientists (chemists, astronomers, ...). Part of Scientific Computing for Physicists, Location: SciNet Online
Wed 10th Feb
10:00 am
11:30 am
Add event to google
A quick introduction how to use SciNet and the Niagara and Mist supercomputers. Location: SciNet Teaching Room MaRS 1140
Show in Google map
661 University Ave., Toronto, M5G 1M1, Canada
Wed 10th Feb
12:00 pm
1:00 pm
Add event to google
Monthly user meeting at SciNet, now virtual, with user discussion and a TechTalk. The topic on 10 Feb 2021 is TBA. Location: SciNet Online
Wed 10th Feb
2:00 pm
3:00 pm
Add event to google
This course is aimed at reducing your struggle in getting started with computational projects, and make you a more efficient computational scientist. Topics include well-established best practices for developing software as it applies to scientific computations, common numerical techniques and packages, and aspects of high performance computing. While we will introduce the C++ language, in one language or another, students should already have some programming experience. Despite the title, this course is suitable for many physical scientists (chemists, astronomers, ...). Part of Scientific Computing for Physicists, Location: SciNet Online
Thu 11th Feb
11:00 am
12:30 pm
Add event to google
In this course data analysis techniques utilizing Python and R statistical language, will be discussed and introduced, as well as, the basics of programming and scientific computing.The goal of this course is to prepare graduate students to perform scientific data analysis. Successful students will learn how to use statistical inference tools to gain insight into large and small data sets, as well as be exposed to cutting-edge techniques and best practises to store, manage and analyze (large) data.Topics include: Python and R programming, version control, automation, modular programming and scientific visualization.Students willing to take the course as part of their graduate program have to enroll through Acorn/ROSI.This course is part of the EES graduate program and to be taught at the UTSc campus. Part of Quantitative Applications for Data Analysis, Location: SciNet Online
Thu 11th Feb
11:00 am
12:00 pm
Add event to google
This course is aimed at reducing your struggle in getting started with computational projects, and make you a more efficient computational scientist. Topics include well-established best practices for developing software as it applies to scientific computations, common numerical techniques and packages, and aspects of high performance computing. While we will introduce the C++ language, in one language or another, students should already have some programming experience. Despite the title, this course is suitable for many physical scientists (chemists, astronomers, ...). Part of Scientific Computing for Physicists, Location: SciNet Online
Fri 12th Feb
12:00 pm
1:00 pm
Add event to google
This course is aimed at reducing your struggle in getting started with computational projects, and make you a more efficient computational scientist. Topics include well-established best practices for developing software as it applies to scientific computations, common numerical techniques and packages, and aspects of high performance computing. While we will introduce the C++ language, in one language or another, students should already have some programming experience. Despite the title, this course is suitable for many physical scientists (chemists, astronomers, ...). Part of Scientific Computing for Physicists, Location: SciNet Online
Mon 22nd Feb
1:00 pm
2:00 pm
Add event to google
This course is an introductory course in programming utilizing the R Statistical Language.The course is restricted to student of the UofT's Biochemistry departments. Students interested should register though their graduate coordinator. Part of Introduction to Programming with R, Location: SciNet Online
Tue 23rd Feb
10:30 am
12:00 pm
Add event to google
In this course data analysis techniques utilizing Python and R statistical language, will be discussed and introduced, as well as, the basics of programming and scientific computing.The goal of this course is to prepare graduate students to perform scientific data analysis. Successful students will learn how to use statistical inference tools to gain insight into large and small data sets, as well as be exposed to cutting-edge techniques and best practises to store, manage and analyze (large) data.Topics include: Python and R programming, version control, automation, modular programming and scientific visualization.Students willing to take the course as part of their graduate program have to enroll through Acorn/ROSI.This course is part of the EES graduate program and to be taught at the UTSc campus. Part of Quantitative Applications for Data Analysis, Location: SciNet Online
Tue 23rd Feb
11:00 am
12:00 pm
Add event to google
This course is aimed at reducing your struggle in getting started with computational projects, and make you a more efficient computational scientist. Topics include well-established best practices for developing software as it applies to scientific computations, common numerical techniques and packages, and aspects of high performance computing. While we will introduce the C++ language, in one language or another, students should already have some programming experience. Despite the title, this course is suitable for many physical scientists (chemists, astronomers, ...). Part of Scientific Computing for Physicists, Location: SciNet Online
Thu 25th Feb
11:00 am
12:30 pm
Add event to google
In this course data analysis techniques utilizing Python and R statistical language, will be discussed and introduced, as well as, the basics of programming and scientific computing.The goal of this course is to prepare graduate students to perform scientific data analysis. Successful students will learn how to use statistical inference tools to gain insight into large and small data sets, as well as be exposed to cutting-edge techniques and best practises to store, manage and analyze (large) data.Topics include: Python and R programming, version control, automation, modular programming and scientific visualization.Students willing to take the course as part of their graduate program have to enroll through Acorn/ROSI.This course is part of the EES graduate program and to be taught at the UTSc campus. Part of Quantitative Applications for Data Analysis, Location: SciNet Online
Thu 25th Feb
11:00 am
12:00 pm
Add event to google
This course is aimed at reducing your struggle in getting started with computational projects, and make you a more efficient computational scientist. Topics include well-established best practices for developing software as it applies to scientific computations, common numerical techniques and packages, and aspects of high performance computing. While we will introduce the C++ language, in one language or another, students should already have some programming experience. Despite the title, this course is suitable for many physical scientists (chemists, astronomers, ...). Part of Scientific Computing for Physicists, Location: SciNet Online
March,2021
Mon 1st Mar
1:00 pm
2:00 pm
Add event to google
This course is an introductory course in programming utilizing the R Statistical Language.The course is restricted to student of the UofT's Biochemistry departments. Students interested should register though their graduate coordinator. Part of Introduction to Programming with R, Location: SciNet Online
Tue 2nd Mar
10:30 am
12:00 pm
Add event to google
In this course data analysis techniques utilizing Python and R statistical language, will be discussed and introduced, as well as, the basics of programming and scientific computing.The goal of this course is to prepare graduate students to perform scientific data analysis. Successful students will learn how to use statistical inference tools to gain insight into large and small data sets, as well as be exposed to cutting-edge techniques and best practises to store, manage and analyze (large) data.Topics include: Python and R programming, version control, automation, modular programming and scientific visualization.Students willing to take the course as part of their graduate program have to enroll through Acorn/ROSI.This course is part of the EES graduate program and to be taught at the UTSc campus. Part of Quantitative Applications for Data Analysis, Location: SciNet Online
Tue 2nd Mar
11:00 am
12:00 pm
Add event to google
This course is aimed at reducing your struggle in getting started with computational projects, and make you a more efficient computational scientist. Topics include well-established best practices for developing software as it applies to scientific computations, common numerical techniques and packages, and aspects of high performance computing. While we will introduce the C++ language, in one language or another, students should already have some programming experience. Despite the title, this course is suitable for many physical scientists (chemists, astronomers, ...). Part of Scientific Computing for Physicists, Location: SciNet Online
Thu 4th Mar
11:00 am
12:30 pm
Add event to google
In this course data analysis techniques utilizing Python and R statistical language, will be discussed and introduced, as well as, the basics of programming and scientific computing.The goal of this course is to prepare graduate students to perform scientific data analysis. Successful students will learn how to use statistical inference tools to gain insight into large and small data sets, as well as be exposed to cutting-edge techniques and best practises to store, manage and analyze (large) data.Topics include: Python and R programming, version control, automation, modular programming and scientific visualization.Students willing to take the course as part of their graduate program have to enroll through Acorn/ROSI.This course is part of the EES graduate program and to be taught at the UTSc campus. Part of Quantitative Applications for Data Analysis, Location: SciNet Online
Thu 4th Mar
11:00 am
12:00 pm
Add event to google
This course is aimed at reducing your struggle in getting started with computational projects, and make you a more efficient computational scientist. Topics include well-established best practices for developing software as it applies to scientific computations, common numerical techniques and packages, and aspects of high performance computing. While we will introduce the C++ language, in one language or another, students should already have some programming experience. Despite the title, this course is suitable for many physical scientists (chemists, astronomers, ...). Part of Scientific Computing for Physicists, Location: SciNet Online
Mon 8th Mar
1:00 pm
2:00 pm
Add event to google
This course is an introductory course in programming utilizing the R Statistical Language.The course is restricted to student of the UofT's Biochemistry departments. Students interested should register though their graduate coordinator. Part of Introduction to Programming with R, Location: SciNet Online
Tue 9th Mar
10:30 am
12:00 pm
Add event to google
In this course data analysis techniques utilizing Python and R statistical language, will be discussed and introduced, as well as, the basics of programming and scientific computing.The goal of this course is to prepare graduate students to perform scientific data analysis. Successful students will learn how to use statistical inference tools to gain insight into large and small data sets, as well as be exposed to cutting-edge techniques and best practises to store, manage and analyze (large) data.Topics include: Python and R programming, version control, automation, modular programming and scientific visualization.Students willing to take the course as part of their graduate program have to enroll through Acorn/ROSI.This course is part of the EES graduate program and to be taught at the UTSc campus. Part of Quantitative Applications for Data Analysis, Location: SciNet Online
Tue 9th Mar
11:00 am
12:00 pm
Add event to google
This course is aimed at reducing your struggle in getting started with computational projects, and make you a more efficient computational scientist. Topics include well-established best practices for developing software as it applies to scientific computations, common numerical techniques and packages, and aspects of high performance computing. While we will introduce the C++ language, in one language or another, students should already have some programming experience. Despite the title, this course is suitable for many physical scientists (chemists, astronomers, ...). Part of Scientific Computing for Physicists, Location: SciNet Online
Wed 10th Mar
10:00 am
11:30 am
Add event to google
A quick introduction how to use SciNet and the Niagara and Mist supercomputers. Location: SciNet Teaching Room MaRS 1140
Show in Google map
661 University Ave., Toronto, M5G 1M1, Canada
Thu 11th Mar
11:00 am
12:30 pm
Add event to google
In this course data analysis techniques utilizing Python and R statistical language, will be discussed and introduced, as well as, the basics of programming and scientific computing.The goal of this course is to prepare graduate students to perform scientific data analysis. Successful students will learn how to use statistical inference tools to gain insight into large and small data sets, as well as be exposed to cutting-edge techniques and best practises to store, manage and analyze (large) data.Topics include: Python and R programming, version control, automation, modular programming and scientific visualization.Students willing to take the course as part of their graduate program have to enroll through Acorn/ROSI.This course is part of the EES graduate program and to be taught at the UTSc campus. Part of Quantitative Applications for Data Analysis, Location: SciNet Online
Thu 11th Mar
11:00 am
12:00 pm
Add event to google
This course is aimed at reducing your struggle in getting started with computational projects, and make you a more efficient computational scientist. Topics include well-established best practices for developing software as it applies to scientific computations, common numerical techniques and packages, and aspects of high performance computing. While we will introduce the C++ language, in one language or another, students should already have some programming experience. Despite the title, this course is suitable for many physical scientists (chemists, astronomers, ...). Part of Scientific Computing for Physicists, Location: SciNet Online
Mon 15th Mar
1:00 pm
2:00 pm
Add event to google
This course is an introductory course in programming utilizing the R Statistical Language.The course is restricted to student of the UofT's Biochemistry departments. Students interested should register though their graduate coordinator. Part of Introduction to Programming with R, Location: SciNet Online
Tue 16th Mar
10:30 am
12:00 pm
Add event to google
In this course data analysis techniques utilizing Python and R statistical language, will be discussed and introduced, as well as, the basics of programming and scientific computing.The goal of this course is to prepare graduate students to perform scientific data analysis. Successful students will learn how to use statistical inference tools to gain insight into large and small data sets, as well as be exposed to cutting-edge techniques and best practises to store, manage and analyze (large) data.Topics include: Python and R programming, version control, automation, modular programming and scientific visualization.Students willing to take the course as part of their graduate program have to enroll through Acorn/ROSI.This course is part of the EES graduate program and to be taught at the UTSc campus. Part of Quantitative Applications for Data Analysis, Location: SciNet Online
Tue 16th Mar
11:00 am
12:00 pm
Add event to google
This course is aimed at reducing your struggle in getting started with computational projects, and make you a more efficient computational scientist. Topics include well-established best practices for developing software as it applies to scientific computations, common numerical techniques and packages, and aspects of high performance computing. While we will introduce the C++ language, in one language or another, students should already have some programming experience. Despite the title, this course is suitable for many physical scientists (chemists, astronomers, ...). Part of Scientific Computing for Physicists, Location: SciNet Online
Thu 18th Mar
11:00 am
12:00 pm
Add event to google
This course is aimed at reducing your struggle in getting started with computational projects, and make you a more efficient computational scientist. Topics include well-established best practices for developing software as it applies to scientific computations, common numerical techniques and packages, and aspects of high performance computing. While we will introduce the C++ language, in one language or another, students should already have some programming experience. Despite the title, this course is suitable for many physical scientists (chemists, astronomers, ...). Part of Scientific Computing for Physicists, Location: SciNet Online
Thu 18th Mar
11:00 am
12:30 pm
Add event to google
In this course data analysis techniques utilizing Python and R statistical language, will be discussed and introduced, as well as, the basics of programming and scientific computing.The goal of this course is to prepare graduate students to perform scientific data analysis. Successful students will learn how to use statistical inference tools to gain insight into large and small data sets, as well as be exposed to cutting-edge techniques and best practises to store, manage and analyze (large) data.Topics include: Python and R programming, version control, automation, modular programming and scientific visualization.Students willing to take the course as part of their graduate program have to enroll through Acorn/ROSI.This course is part of the EES graduate program and to be taught at the UTSc campus. Part of Quantitative Applications for Data Analysis, Location: SciNet Online
Mon 22nd Mar
1:00 pm
2:00 pm
Add event to google
This course is an introductory course in programming utilizing the R Statistical Language.The course is restricted to student of the UofT's Biochemistry departments. Students interested should register though their graduate coordinator. Part of Introduction to Programming with R, Location: SciNet Online
Tue 23rd Mar
10:30 am
12:00 pm
Add event to google
In this course data analysis techniques utilizing Python and R statistical language, will be discussed and introduced, as well as, the basics of programming and scientific computing.The goal of this course is to prepare graduate students to perform scientific data analysis. Successful students will learn how to use statistical inference tools to gain insight into large and small data sets, as well as be exposed to cutting-edge techniques and best practises to store, manage and analyze (large) data.Topics include: Python and R programming, version control, automation, modular programming and scientific visualization.Students willing to take the course as part of their graduate program have to enroll through Acorn/ROSI.This course is part of the EES graduate program and to be taught at the UTSc campus. Part of Quantitative Applications for Data Analysis, Location: SciNet Online
Tue 23rd Mar
11:00 am
12:00 pm
Add event to google
This course is aimed at reducing your struggle in getting started with computational projects, and make you a more efficient computational scientist. Topics include well-established best practices for developing software as it applies to scientific computations, common numerical techniques and packages, and aspects of high performance computing. While we will introduce the C++ language, in one language or another, students should already have some programming experience. Despite the title, this course is suitable for many physical scientists (chemists, astronomers, ...). Part of Scientific Computing for Physicists, Location: SciNet Online
Thu 25th Mar
11:00 am
12:30 pm
Add event to google
In this course data analysis techniques utilizing Python and R statistical language, will be discussed and introduced, as well as, the basics of programming and scientific computing.The goal of this course is to prepare graduate students to perform scientific data analysis. Successful students will learn how to use statistical inference tools to gain insight into large and small data sets, as well as be exposed to cutting-edge techniques and best practises to store, manage and analyze (large) data.Topics include: Python and R programming, version control, automation, modular programming and scientific visualization.Students willing to take the course as part of their graduate program have to enroll through Acorn/ROSI.This course is part of the EES graduate program and to be taught at the UTSc campus. Part of Quantitative Applications for Data Analysis, Location: SciNet Online
Thu 25th Mar
11:00 am
12:00 pm
Add event to google
This course is aimed at reducing your struggle in getting started with computational projects, and make you a more efficient computational scientist. Topics include well-established best practices for developing software as it applies to scientific computations, common numerical techniques and packages, and aspects of high performance computing. While we will introduce the C++ language, in one language or another, students should already have some programming experience. Despite the title, this course is suitable for many physical scientists (chemists, astronomers, ...). Part of Scientific Computing for Physicists, Location: SciNet Online
Mon 29th Mar
1:00 pm
2:00 pm
Add event to google
This course is an introductory course in programming utilizing the R Statistical Language.The course is restricted to student of the UofT's Biochemistry departments. Students interested should register though their graduate coordinator. Part of Introduction to Programming with R, Location: SciNet Online
Tue 30th Mar
10:30 am
12:00 pm
Add event to google
In this course data analysis techniques utilizing Python and R statistical language, will be discussed and introduced, as well as, the basics of programming and scientific computing.The goal of this course is to prepare graduate students to perform scientific data analysis. Successful students will learn how to use statistical inference tools to gain insight into large and small data sets, as well as be exposed to cutting-edge techniques and best practises to store, manage and analyze (large) data.Topics include: Python and R programming, version control, automation, modular programming and scientific visualization.Students willing to take the course as part of their graduate program have to enroll through Acorn/ROSI.This course is part of the EES graduate program and to be taught at the UTSc campus. Part of Quantitative Applications for Data Analysis, Location: SciNet Online
Tue 30th Mar
11:00 am
12:00 pm
Add event to google
This course is aimed at reducing your struggle in getting started with computational projects, and make you a more efficient computational scientist. Topics include well-established best practices for developing software as it applies to scientific computations, common numerical techniques and packages, and aspects of high performance computing. While we will introduce the C++ language, in one language or another, students should already have some programming experience. Despite the title, this course is suitable for many physical scientists (chemists, astronomers, ...). Part of Scientific Computing for Physicists, Location: SciNet Online
April,2021
Thu 1st Apr
11:00 am
12:30 pm
Add event to google
In this course data analysis techniques utilizing Python and R statistical language, will be discussed and introduced, as well as, the basics of programming and scientific computing.The goal of this course is to prepare graduate students to perform scientific data analysis. Successful students will learn how to use statistical inference tools to gain insight into large and small data sets, as well as be exposed to cutting-edge techniques and best practises to store, manage and analyze (large) data.Topics include: Python and R programming, version control, automation, modular programming and scientific visualization.Students willing to take the course as part of their graduate program have to enroll through Acorn/ROSI.This course is part of the EES graduate program and to be taught at the UTSc campus. Part of Quantitative Applications for Data Analysis, Location: SciNet Online
Thu 1st Apr
11:00 am
12:00 pm
Add event to google
This course is aimed at reducing your struggle in getting started with computational projects, and make you a more efficient computational scientist. Topics include well-established best practices for developing software as it applies to scientific computations, common numerical techniques and packages, and aspects of high performance computing. While we will introduce the C++ language, in one language or another, students should already have some programming experience. Despite the title, this course is suitable for many physical scientists (chemists, astronomers, ...). Part of Scientific Computing for Physicists, Location: SciNet Online
Mon 5th Apr
1:00 pm
2:00 pm
Add event to google
This course is an introductory course in programming utilizing the R Statistical Language.The course is restricted to student of the UofT's Biochemistry departments. Students interested should register though their graduate coordinator. Part of Introduction to Programming with R, Location: SciNet Online
Tue 6th Apr
11:00 am
12:00 pm
Add event to google
This course is aimed at reducing your struggle in getting started with computational projects, and make you a more efficient computational scientist. Topics include well-established best practices for developing software as it applies to scientific computations, common numerical techniques and packages, and aspects of high performance computing. While we will introduce the C++ language, in one language or another, students should already have some programming experience. Despite the title, this course is suitable for many physical scientists (chemists, astronomers, ...). Part of Scientific Computing for Physicists, Location: SciNet Online
Thu 8th Apr
11:00 am
12:00 pm
Add event to google
This course is aimed at reducing your struggle in getting started with computational projects, and make you a more efficient computational scientist. Topics include well-established best practices for developing software as it applies to scientific computations, common numerical techniques and packages, and aspects of high performance computing. While we will introduce the C++ language, in one language or another, students should already have some programming experience. Despite the title, this course is suitable for many physical scientists (chemists, astronomers, ...). Part of Scientific Computing for Physicists, Location: SciNet Online
Mon 12th Apr
1:00 pm
2:00 pm
Add event to google
This course is an introductory course in programming utilizing the R Statistical Language.The course is restricted to student of the UofT's Biochemistry departments. Students interested should register though their graduate coordinator. Part of Introduction to Programming with R, Location: SciNet Online
Wed 14th Apr
10:00 am
11:30 am
Add event to google
A quick introduction how to use SciNet and the Niagara and Mist supercomputers. Location: SciNet Teaching Room MaRS 1140
Show in Google map
661 University Ave., Toronto, M5G 1M1, Canada
Mon 19th Apr
1:00 pm
2:00 pm
Add event to google
This course is an introductory course in programming utilizing the R Statistical Language.The course is restricted to student of the UofT's Biochemistry departments. Students interested should register though their graduate coordinator. Part of Introduction to Programming with R, Location: SciNet Online
Mon 26th Apr
1:00 pm
2:00 pm
Add event to google
This course is an introductory course in programming utilizing the R Statistical Language.The course is restricted to student of the UofT's Biochemistry departments. Students interested should register though their graduate coordinator. Part of Introduction to Programming with R, Location: SciNet Online
May,2021
Mon 3rd May
1:00 pm
2:00 pm
Add event to google
This course is an introductory course in programming utilizing the R Statistical Language.The course is restricted to student of the UofT's Biochemistry departments. Students interested should register though their graduate coordinator. Part of Introduction to Programming with R, Location: SciNet Online
Mon 10th May
1:00 pm
2:00 pm
Add event to google
This course is an introductory course in programming utilizing the R Statistical Language.The course is restricted to student of the UofT's Biochemistry departments. Students interested should register though their graduate coordinator. Part of Introduction to Programming with R, Location: SciNet Online
Wed 12th May
10:00 am
11:30 am
Add event to google
A quick introduction how to use SciNet and the Niagara and Mist supercomputers. Location: SciNet Teaching Room MaRS 1140
Show in Google map
661 University Ave., Toronto, M5G 1M1, Canada
July,2021
Sun 11th Jul
1:00 pm
to Fri 23rd Jul
6:00 pm
Add event to google
This summer school will familiarize the best students in computational sciences with major state-of-the-art aspects of HPC for a variety of scientific disciplines, catalyze the formation of networks, provide advanced mentoring, facilitate international exchange and open up further career options. Leading Canadian, European, Japanese and American computational scientists and HPC technologists will offer instruction in parallel sessions on a variety of topics as: HPC challenges in major scientific disciplines, HPC programming proficiencies, Performance analysis and profiling, Software engineering, Numerical libraries, Big data analysis and analytics, Machine learning, Scientific visualization, and Canadian, European, Japanese and US HPC infrastructure. This events was originally planned to take place in July 2020 but has been moved to July 2021 instead.
Show in Google map
Unspecified Location