SciNet’s Summer School: a decade-old tradition

October 1, 2019 in blog, blog-general, for_educators, for_press, frontpage, news

Most would associate summertime with a relaxing and leisurely season of the year. However, HPC centres like SciNet, as in many others around the world, perceive this differently and are actually quite busy during this period.

Among the many activities SciNet carries out during the summer “break” are workshops and short courses. These activities are scheduled in the summer to fit between the term-long courses that SciNet offers to graduate students at the University of Toronto.

In particular, one of SciNet’s oldest training activities is a one-week intensive school on high-performance and technical computing. This annual summer school is our flagship training event, and is aimed at graduate students, undergraduate students, postdocs, researchers and occasionally even faculty members, who are engaged in compute intensive research. SciNet’s first such summer school was given in 2009, at which time it was called a “Parallel Scientific Computing” workshop. This first version of the school was heavily focused on parallel programming and applications in astrophysics.

These days, SciNet’s summer school is part of the Compute Ontario Summer School on Scientific and High Performance Computing. Held geographically in the west, centre and east of the province of Ontario in Canada, the summer school provides attendees with the opportunity to learn and share knowledge and experience in high performance and technical computing on modern HPC platforms. The central edition is the continuation of the SciNet summer school.

Not only is the school organized in a wider context, its program has expanded as well. In the last three years, the Toronto edition has had three streams with a wide variety of topics, from shell programming to data science, machine learning and neural networks, biomedical computing, and, still, parallel programming.

The type of training offered at the summer school is very practical, with a lot of hands-on exercises and live coding. This practical approach is very typical for most of SciNet’s courses but takes its ultimate form during the summer school instruction.

In addition to the training that participants received, the school also offers the opportunity of participants to interact with other participants, as well as the instructors, exchange ideas or discuss about current problems they are trying to solve. In fact, since a couple of years, the program includes focused sessions such as “Bring your own code” and “Bio-Hacking”, where this sort of interactions are not only promoted but the main theme.

Our summer school has the add-on feature of being absolutely free of charge for participants! That’s something we believe is quite important for several reasons, but mostly because we believe that in this way we can reach more researchers from fields that are relatively new to doing computational research.

This type of event not only benefits the students and participants of the summer school, but also enables collaborations between departments and consortia, as part of the training was delivered in partnership with colleagues from SHARCNET and the Centre for Addiction and Mental Health.

click on picture to enlarge

SciNet’s first summer school in 2009 focussed on Parallel Scientific Computing and placed emphasis on scientific applications such as in astrophysics.

click on picture to enlarge

SciNet’s latest (and largest) summer school, held in June 2019. This summer school had three parallel streams: the traditional High-Performance Computing, one on Data Science and a stream on BioInformatics/Medical applications, which was added in 2017. Details of the courses covered in the school can be found in SciNet education website: SciNet.courses/438

Logistics and Organizational details of the Summer School

There is no simple recipe to make a successful summer school that attracts and retains motivated participants for five full days, but below are a few necessary ingredients.

Sessions and instructors… Coming up with a program of three streams with sessions on scientific computing, parallel programming and data science is a challenge, but finding the excellent instructors for them is an even greater challenge, especially in summer, when many people are away.
Nonetheless, the summer school has been able to grow from a single-stream offering of 100 lecture hours in 2014 to a three-stream program with nearly 300 lecture hours in 2019. Luckily, we are not limited just to SciNet staff for instructors, but get help from the people from SHARCNET and CAMH as well.

Rooms… Organizing a training section of one-week long from Monday to Friday starting at 9:30am and finishing 4:30pm, offers a lot of challenges. For starting, finding rooms (not only one, but actually three –as there are three parallel concurrent sessions), ideally on the same building and each of them able of hosting around a hundred people, with proper power outlets, AC capabilities, and comfortable enough is a task far from trivial. We manage to do this, again with the effort of our instructors and staff who start to look into booking rooms months in advance… again summertime is not that “quiet and relaxing time” people may think of at the university premises…

Taking attendance… We issue certificates for those participants that attend at least three days. This requires that we record the attendance of the participants for every session every day. In the initial summer schools, where there were one or two parallel sessions at most, and the total number of participants wasn’t too large, we used a paper signing list, where students self-reported their attendance. By the end of the week we would collect and count these lists and manually awarded certificates.

But with 3 parallel streams and more than two hundred participants, the task of manually sorting out attendance has become unfeasible. To tackle this issue, we developed a system using our own education website, where we ask the participants to take a “test” selecting from 10 randomly generated codes the one that is given in the session they are attending.
In this way, the participation of each student is recorded and tied to the specific session associated with the selected code. The same site handles registration and dispenses the students’ access to temporary accounts on computing resources they will use during the week, and contains the teaching materials.

Certificates… Having recorded the attendance from the participants, this is just the beginning of the process of issuing the certificates. After this, we have scripts that can identify the participants that would be awarded a certificate of participating according to the criteria stated before, and generate a PDF document stating that. Years ago, we use to run through the university campus on the last day to print hard-copies of these, but since last year we send the participants an electronic version of it. The number of certificates demonstrates the growth in attendance over the years: In 2014 we awarded 30 attendees with summer school certificates, in 2019, this number has grown to 159.

Financial support… One remarkable thing about the school is that we are able to continue offering this high-quality and relevant training free of cost to the participants. This is not a easy task to achieve, as there are several costs associated to the event. The cost of the instructors is absorbed by the partnering organization (SciNet, SHARCNET and CAMH), while logistic costs for the rooms and AV utilizations are covered by SciNet, while coffee breaks that are provided to the participants were sponsored by Compute Ontario.

Other centres have decided to charge their participants a modest registration fee for their summer school, which allows them to tackle two things: one is to alleviate the cost associated with the event itself; and secondly, to reduce the number of no-shows during the school. Fortunately our attendance numbers have been rising steadily every year, but our turn-out rate seems to be steady and predictable at 70%, making the no-show effect non-issue.

More summer activities…

SciNet also participates in the International HPC Summer School, sending a few instructors and 10 students to this competitive one-week program every year.

Last but not least, SciNet finished this year’s summer season co-organizing and hosting a “virtual” remotely hosted one week-long PetaScale Computing Institute at the end of August.

Although physically and intellectually exhausted, we finished one of the busiest summer seasons ever in SciNet’s training and education history, allowing us to keep pushing ourselves and re-charge of our energies for the beginning of the academic year.

Further details and information about SciNet’s education and teaching endeavours can be found in the following link:

SciNet’s publication about Niagara deployment

August 3, 2019 in blog, blog-general, blog-technical, for_press, for_researchers, for_users, frontpage, news, Road_to_Niagara

Have you ever wondered how a supercomputer is designed and brought to life?
Read SciNet’s latest paper on the deployment of Canada’s fastest supercomputer: Niagara.

Niagara is currently the fastest supercomputer accessible to academics in Canada.
In this paper we describe the transition process from our previous systems, the TCS and GPC, the procurement and deployment processes, as well as the unique features that make Niagara a one-of-a-kind machine in Canada.

Please cite this paper when using Niagara to run your computations, simulations or analysis:
“Deploying a Top-100 Supercomputer for Large Parallel Workloads: the Niagara Supercomputer”, Ponce et al, “Proceedings of PEARC’19: Practice and Experience in Advanced Research Computing on Rise of the Machines (Learning)”, 34 (2019).

Learn more about SciNet’s research and publications by visiting the following link.

SciNet’s webinar on “Trends and Strategies in Advanced Research Computing Education”

January 16, 2019 in for_educators, for_press, in_the_news, news

SciNet was invited to present our latest findings (see https://www.scinet.utoronto.ca/scinet-research) about “Trends and Strategies in Advanced Research Computing Education” in a SIGHPC Education webinar.

This webinar was based on our recent publications:



Trends in Demand, Growth, and Breadth in Scientific Computing Training Delivered by a High-Performance Computing Center,
Journal of Computational Science Education vol 10(1) (2019).
R.Van Zon, M.Ponce, E.Spence and D.Gruner
Presented at the Fifth Workshop on Best Practices for Enhancing HPC Training and Education (BPHTE18) @ SC18
Bridging the Educational Gap between Emerging and Established Scientific Computing Disciplines,
Journal of Computational Science Education, vol 10(1) (2019).
M.Ponce, E.Spence, R.Van Zon and D.Gruner
Presented at the Workshop on Strategies for Enhancing HPC Education and Training (SEHET18) @ PEARC18


Scientific Computing, High-Performance Computing and Data Science in Higher Education,
Journal of Computational Science Education, vol 10(1) (2019).
arXiv version (2016).
M.Ponce, E.Spence, D.Gruner and R.Van Zon
Presented at the Workshop on Strategies for Enhancing HPC Education and Training (SEHET18) @ PEARC18

New Courses and New Initiatives for this Coming Semester

September 2, 2017 in for_educators, for_press, frontpage, news, Uncategorized


Excited about the beginning of a new academic year?

We, at SciNet, certainly are!

SciNet has created several new courses for this coming fall semester and we are really excited about that!
Take a look at our education website to learn about all the courses and workshops that we will be offering.

In addition to the traditional courses on Scientific Computing, we have also added courses on Computational BioStatistics, Machine Learning and Neural Networks, and basic level introductory courses for students without any previous background on computing or programming!

Additionally, several members of our team have obtained Graduate restricted appointed positions at the Institute of Medical Sciences and the Physics Department!

The number of SciNet courses that are listed as U of T graduate courses continues to increase (no small feat for a non-teaching unit like SciNet). Our full-term graduate courses in 2017/2018 are

Finally, starting this September we want to officially launch our “Research Initiative Program”!

This is a collaborative program, aimed to partner with research groups across the University, in order to boost and empower research.

Of course, research support is something that we have been doing since the beginning of SciNet, by providing technical support and the infrastructure to researchers for tackling their computational needs.
This program will go beyond that, by allowing researchers to explicitly partner with SciNet’s scientists, in order to pursue short and long term research projects.

More information about this program, ongoing collaborations and areas of expertise can be found at the
Research @ SciNet page.

Postdocs opportunities at SOSCIP

July 19, 2017 in HPC Jobs, HPC Jobs Ontario

Several SOSCIP projects are looking for Postdoctoral Fellows.

You can find details about these positions in the following link.

SciNet’s new home… SciNet has moved to MaRS!

August 17, 2016 in for_press, frontpage, news

SciNet-at-MaRS

 

Welcome to SciNet’s new space: SciNet has moved to the new MaRS tower!!!

Our offices are now located on the eleventh floor, on the new MaRS tower at 661 University Avenue, Toronto, ON M5G 1M1.

Users are welcome to make an appointment with our personnel and stop by to visit our new space.

SciNetatMaRS

Gravitational Waves detected!!!

February 12, 2016 in blog, for_educators, for_press, for_researchers, for_users, in_the_news, news, success_story, Uncategorized

On February 11th, 2016 (10:30AM EST), scientists from Caltech, MIT and the LIGO Scientific Collaboration together with representatives of the National Science Foundation, announced in a live press conference, the first direct detection of gravitational waves.
The event detected, named GW150914, was produced by two colliding black holes, inspariling and merging together. This signal was detected by LIGO on September 14th, 2015.

Details of this discovery can be found in the following papers:

Many of the researchers running simulations and analysing data in several of our clusters are directly involved in the efforts for accurately modelling, simulating and detecting gravitational wave signals.
As a matter of fact, one of the simulations used for visualizing one of the movies screened during the announcement of the discovery of gravitational waves, was performed on SciNet’s General Purpose Cluster (GPC).

“The first detection of gravitational waves passing through Earth is a tremendous discovery. These waves were generated by never before observed astronomical objects, colliding black holes. I am very grateful for SciNet and Compute Canada to provide the computing resources needed to explore the properties of binary black holes, research that was instrumental in building the waveform-templates that LIGO used in its momentous discovery.”
Prof. Harald Pfeiffer (Canadian Institute for Theoretical Astrophysics, University of Toronto)

plane0060plane0320 plane0490 plane0590 plane0830
Simulation of a binary black-hole system emitting gravitational radiation (gravitational waves) performed on SciNet’s General Purpose Cluster (GPC).
These simulations were performed by solving Einstein’s equations of General Relativity using a code co-developed on SciNet, by the SXS/CITA collaboration.
Credit: SXS/CITA/SciNet
Another of the videos displayed on the press-conf, was also produced by solving Einstein equations using this same computer code co-developed on SciNet by the SXS/CITA collaboration.

Big Data Challenge for HighSchool Students 2016

February 12, 2016 in blog-general, for_educators, for_press, frontpage, success_story

IMG_20160204_091035 IMG_20160204_144339 IMG_20160204_144158

SciNet in partnership with STEM Fellowship (http://stemfellowship.org/), SAS and Open Data Toronto, organized the second edition of the “Big Data Challenge for High School Students”.

On Feb. 4th, the 2015/2016 Big Data Challenge for high school students took place. 8 teams from several schools across the GTA presented their research on data analytic in front of peers and judges.

Inspired by “Big Data in the City” theme, students gathered data from Open Data Toronto, analysed and investigated topics such as: immigration relocation strategies, emergency response for first responders services, identification of clusters in Toronto, environmental analysis of Toronto neighbourhoods, debt risk analysis of the city, collision patterns and prevention, data mining from social media related to energy efficient companies, among many others.

SciNet members, in addition to organize this event participated evaluating the initial proposals and judging the final 8 qualified for the final presentation.

IMG_20160204_143755

Participants of the Big Data Challenge will be participating in tours to SciNet’s datacenter, as an unique opportunity to experience and visit the home of the largest super-computers in Canada!

 

Congratulations to all the participants!!!

 

Further information can be found in the following links:

http://stemfellowship.org/bigdata

http://journal.stemfellowship.org/doi/abs/10.17975/sfj-2015-013

https://support.scinet.utoronto.ca/education/go.php/230/index.php/ib/1//p_course/230

“Summer at SciNet”: high-school mentorship program at SciNet HPC Consortium

June 2, 2015 in for_educators

“Summer at SciNet”: high-school mentorship program at SciNet HPC Consortium

We are pleased to announce the introduction of a new high-school mentorship program: “Summer at SciNet”.
This program will allow secondary school students, with a natural curiosity and interest in high performance computing, data analysis techniques and related topics, to spend part of the summer (July-August 2015) discussing and developing their own projects under the supervision of SciNet’s staff.

Those interested in having a mentor during this summer should write an email to courses@scinet.utoronto.ca .
They have to include a CV and a one-page proposal, indicating what kind of project they would like to develop, as well as their computational expertise (e.g. languages, experience in parallel programming, courses taken, etc.). Proposals can be individual, or by teams of two participants at most.
The deadline for applications is June 21st, 2015.

Examples of potential areas of interest for projects are: parallel programming using shared memory architectures (eg openMP), parallel programming using distributed memory (MPI), data mining and data analysis using python or R, studies of complex networks simulating real-life problems, etc.

This year, we are planning to have few spots available, and the successful candidates will be announced by June 25th.
The meetings will be on a weekly or bi-weekly basis, depending on the progress and interest in the project from the mentees, and the scope will be to discuss and advise the participant on ways to develop and achieve the goals proposed in the original project.  The successful projects will include access to the SciNet high performance computational systems, for the duration of the projects.

Please feel free to distribute this information to all the people you think may be interested in this opportunity, and do not hesitate to contact us (courses@scinet.utoronto.ca) if you have any questions.

See you this summer!
The SciNet Team